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BCH Based U-UV Codes and Its SCL Decoding
Wenhao Chen , Jinjun Cheng , Changyu Wu , Li Chen , Senior Member, IEEE,

and Huazi Zhang , Senior Member, IEEE

Abstract—U-UV codes are constructed by a number of com-
ponent codes in the (U |U+V) recursive structure, where the
U codes and V codes are component codes. This construction
is known as the Plotkin construction and the U-UV codes are
also known as the generalized concatenated codes with inner
polar codes. This paper proposes U-UV codes with primitive
BCH component codes as a pursuit of designing competent short-
to-medium length codes for future ultra low-latency communi-
cations. The U-UV code design considers both the finite length
rate of the subchannels and the equal error probability rule,
yielding a good performing U-UV code that is designed for a
targeted transmission rate. The successive cancellation list (SCL)
decoding and its complexity reduction variant are proposed to
maximize the code’s performance. Their decoding complexity
and latency are analyzed. Decoding performance of the U-UV
codes is further studied, showing that SCL decoding of the
U-UV codes can approach its approximated maximum likelihood
(ML) decoding bound. They can outperform other competent
short-to-medium length codes, including polar codes, BCH codes
and tail-biting convolutional (TBC) codes.

Index Terms—Generalized concatenated codes, Plotkin con-
struction, successive cancellation list decoding, U-UV codes.

I. INTRODUCTION

FUTURE communication systems do not only require ul-
tra reliable information transmission, but also ultra low

latency. Competent short-to-medium length channel codes will
play an important role. Modern codes, including turbo codes
[1], low-density parity-check (LDPC) codes [2] and polar codes
[3], can produce a capacity approaching performance. Among
them, polar codes have been proven to achieve the capacity
of the binary input symmetric discrete memoryless channel
(DMC). However, their advanced error-correction capabilities
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are realized based on a large codeword length, which inevitably
incurs a large decoding latency. In the short-to-medium length
regime, BCH codes [4], [5], tail-biting convolutional (TBC)
codes [6] and polar codes [3] are known to be the competent
candidates [7]. This paper introduces another promising candi-
date, the U-UV codes. They are produced by the (U |U+V)
recursive construction, where the U codes and the V codes
are component codes. This construction was first proposed by
Plotkin [8]. Hence, it is also known as the Plotkin construc-
tion. For simplicity, we use U-UV to refer the coding structure
and call them the U-UV codes. The U-UV construction can
be extended recursively by involving more component codes,
resulting in a longer U-UV code.

It is known that both Reed-Muller (RM) codes [9], [10]
and polar codes [3] can be interpreted by the U-UV structure.
The RM codes have also been proven to achieve the capacity
of erasure channels [11]. Polar codes are founded based on
channel polarization where the U-UV construction leads to
subchannels with polarized capacities. Consequently, the coded
transmission can be designed accordingly. That says the sub-
channels with a capacity close to 1 will be used to transmit
the information bits (known as the unfrozen bits), and the re-
maining subchannels will be used to transmit the redundancy
(known as the frozen bits). Portion of information bits is the
code rate. It has been shown that when the codeword length n
is sufficiently large, successive cancellation (SC) decoding of
polar codes can achieve the channel capacity with a decoding
complexity of O(n log2 n) [3]. However, when the codeword
length is limited, channel polarization is incomplete. There
exists a significant portion of subchannels without a polarized
capacity. This will downgrade the effectiveness of the above
mentioned bit wise transmission assignment. To improve the
decoding performance, the SC list (SCL) decoding [12], [13]
has been proposed. However, it is known that the SC decoding
inherits a large latency. For this, the multi-bit SC decoding have
been proposed [14], [15]. They have been further explored for
reducing the SCL decoding latency [16], [17], [18], [19], [20],
[21], [22]. To compensate the effect of incomplete polarization,
the polarization-adjusted convolutional (PAC) codes [23] were
recently proposed. The additional convolutional transform en-
ables a better utilization of the polarized subchannels. It has
been shown that the rate-1/2 length-128 PAC code with Fano
decoding [24], [25] can approach the normal approximation
(NA) bound. The U-UV coding is an alternative solution for
incomplete polarization. Under the U-UV paradigm, each com-
ponent code is transmitted through a subchannel. Their rates can
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be designed based on the subchannel capacities. Decoding of a
U-UV code can be enpowered by that of its component codes,
making them another good performing short-to-medium length
channel code. It has been shown that with the soft decoding
of algebraic-geometric component codes, the U-UV codes can
attain the capacity of the discrete symmetric channel [26]. This
work shows that the U-UV codes can outperform polar codes,
but at the cost of decoding complexity. However, the U-UV
codes inherit a higher degree of SC/SCL decoding parallelism,
yielding a much lower SC/SCL decoding latency.

By specifying the component codes, the U-UV codes have
been known as the generalized concatenated codes (GCCs), in
which the component codes and polar codes are the outer codes
and inner codes, respectively [27], [28], [29], [30], [31], [32],
[33]. These existing work have primarily considered BCH codes
as the component codes [27], [28], [29], [32], while the ex-
tended BCH (eBCH) codes have been considered in [33]. Other
component codes such as convolutional codes, Reed-Solomon
codes and very small block codes have been considered in [28],
[29], [30] and [31], respectively. The design of U-UV codes
is realized by determining their component code rates. One
straightforward approach arises from multilevel coding design
[34], i.e. to estimate the subchannel capacities and design the
component code rates accordingly. This design produces a code
that aims to achieve a targeted transmission rate. But it cannot
guarantee the code’s performance. For this, a design algorithm
has been proposed in [27] based on equaling the decoding error
probabilities of the component codes. Meanwhile, the design of
[31] and [33] aim to minimize the overall block error probability
and maximize the minimum distance of the concatenated code,
respectively. Bounds on the SC decoding error exponent and
error rate have been analyzed in [32]. In the above mentioned
work, the U-UV codes are mainly decoded by the SC algorithm,
except in [33] the SCL algorithm was proposed based on hybrid
list decoding of the eBCH codes. To the best of our knowledge,
the first SCL decoding of U-UV codes was proposed in [35]. It
has been shown that in the short-to-medium length regime, SCL
decoding of the U-UV codes can outperform that of the polar
codes1. Recently, the U-UV codes have also been integrated
with bit-interleaved coded modulation (BICM) for realizing
the spectrally efficient coded transmission [36], which is an
extended research of this proposed work.

This paper presents a more complete research upon the au-
thors’ earlier work of [35]. Its major contributions include:

1) A combined code design approach is proposed for the
U-UV codes, ensuring its decoding performance under a
targeted transmission rate. Considering the BCH compo-
nent codes are of limited length, finite length rates over
the subchannels are first calculated. To ensure decoding
performance of the U-UV code, component code rates are
further adjusted through lining their theoretical decoding
error probabilities, i.e., their tangential maximum likeli-
hood (ML) decoding bounds.

1In this work, the SCL decoding of polar codes is assisted by a cyclic
redundancy check (CRC) code. They are also called the CRC-polar codes.

2) SCL decoding of the proposed BCH based U-UV codes
is introduced. The exponential list decoding complexity
is rationalized by path pruning. To further facilitate the
decoding, the reduced complexity SCL (RC-SCL) decod-
ing is proposed. It can effectively eliminate the redundant
decoding paths. Both the complexity and latency of the
proposed SCL decoding are characterized, which in par-
ticular demonstrates the code’s feature of yielding a low
decoding latency.

3) Systematic U-UV codes are also introduced with the
characterizations of their encoding and SCL decoding.
The systematic U-UV codes have the decoding bit er-
ror rate (BER) performance advantage over their non-
systematic counterparts.

4) Decoding performance of the U-UV codes is further an-
alyzed and studied numerically. The SC decoding up-
per bound and approximated ML decoding lower bound
are presented as our simulation benchmarks. Our sim-
ulation results show that with BCH component codes,
SCL decoding of the U-UV codes can approach their ap-
proximated ML decoding lower bound. The U-UV codes
are also compared with other competent short-to-medium
length codes, including polar codes, BCH codes and TBC
codes. Our simulation results show that the proposed
U-UV codes can outperform the BCH codes and TBC
codes with a lower decoding complexity as well as la-
tency. In comparison with polar codes, the U-UV codes’
performance advantage comes at the cost of decoding
complexity. But they still exhibit a significant advantage
on terms of decoding latency.

The rest of this paper is organized as follows. Section II intro-
duces the U-UV code construction, including its systematic en-
coding. Section III proposes the combined U-UV code design.
Section IV introduces the SCL decoding for the U-UV codes,
and further proposes its complexity reduction variant. Section
V analyzes the decoding complexity and latency. Section VI
studies performance of the U-UV codes. Finally, Section VII
concludes the paper.

II. CODE CONSTRUCTION

The U-UV code construction is introduced in the context
of BCH component codes. However, it should be noted that
any linear block code can be utilized for the construction. The
systematic U-UV encoding is also introduced.

A. Code Construction

Definition 1 [8]: Let the U code and the V code be two
linear block codes of length n, which are parameterized by
(n, kU, dU) and (n, kV, dV), respectively, where kU and kV are
their dimensions, and dU and dV are their minimum Hamming
distances, respectively. The U-UV code is a (2n, k, dmin) linear
block code that is constructed by

{(u|u+ v);u ∈U and v ∈V}, (1)

where k = kU + kV and dmin =min{2dU, dV} is the mini-
mum Hamming distance of the U-UV code. Note that for
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Fig. 1. Recursive construction of an H-level U-UV code.

convenience, U and V are also used to denote the respec-
tive codebooks.

In the proposed coding scheme, the above U code and V
code are primitive BCH codes. This construction can be ex-
tended recursively by involving more BCH component codes,
forming a larger U-UV code. This becomes a multi-level
U-UV construction. Fig. 1 illustrates the recursive construction
of an H-level U-UV code. Please note that in the rest of the
paper, unless specifically mentioning, we use U

(h)
i (or u

(h)
i )

to denote the ith component code (or codeword) at level-h,
where h= 0, 1, ..., H and i= 1, 2, ..., 2H−h. There are 2H−h

component codes at level-h. At each level, if i is odd, U(h)
i

is a U code. Otherwise, it is a V code. In particular, when
h= 0, component code U

(0)
i is an (n, ki) BCH code with rate

Ri = ki/n. In general, an H-level U-UV code consists of 2H

BCH component codes with an overall length of 2Hn. Its rate
is (
∑2H

i=1 Ri)/2
H . Based on Definition 1, the ith component

code of level-h (h≥ 1) is constructed by two component codes
of level-(h− 1) as

{
u
(h)
i =

(
u
(h−1)
2i−1

∣
∣
∣u

(h−1)
2i−1 + u

(h−1)
2i

)}
. (2)

Let G
(h−1)
2i−1 and G

(h−1)
2i denote the generator matrices of

U
(h−1)
2i−1 and U

(h−1)
2i , respectively. Based on the construction of

(2), the generator matrix of U(h)
i is

G
(h)
i =

[
G

(h−1)
2i−1 G

(h−1)
2i−1

0 G
(h−1)
2i

]

, (3)

where 0 is an all-zero matrix. With the 2H BCH component
codes, G(0)

1 ,G
(0)
2 , . . . ,G

(0)

2H
can be defined. Generator matrix

of the H-level U-UV code, denoted as G(H)
1 , can be computed

recursively as in (3). Let m denote the message vector and the
U-UV codeword u

(H)
1 is generated by

u
(H)
1 =mG

(H)
1 . (4)

Note that the U-UV codes can also be interpreted as the gen-
eralized polar concatenated codes [27], in which 2H outer
BCH component codes are concatenated with n inner polar
codes. The inner codes are of length 2H . This GCC interpre-
tation is shown as in Fig. 2. Coded bits of an outer code-
word are distributed to the same information position of the
inner polar encoders. This implies that the U-UV construction

Fig. 2. GCC interpretation of a U-UV code with BCH component codes.

possesses an intrinsic channel polarization effect [3]. The BCH
component codes are transmitted through the equivalent polar-
ized subchannels.

B. Systematic Encoding

The systematic generator matrix of a U-UV code can also be
recursively constructed from the systematic generator matrices
of its BCH component codes. Let G̃(h)

i denote the systematic
generator matrix of the ith component code at level-h, i.e., U(h)

i .
In order to characterize the systematic generator matrix of a
U-UV code, the following Lemma on the subchannel capacities
is needed.

Lemma 1: At level-(h− 1), capacity of the subchannel that
transmits U(h−1)

2i−1 is greater than or equal to that of the subchan-

nel that transmits U
(h−1)
2i .

Proof: This is a property of the channel polarization the-
orem [3]. Combining and splitting two independent channels,
result in a good subchannel with a higher capacity and a bad
subchannel with a lower capacity. Referring to Fig. 1, U(h−1)

2i−1

and U
(h−1)
2i correspond to the good subchannel and the bad

subchannel at level-(h− 1), respectively.
Let k(h−1)

2i−1 and k
(h−1)
2i denote the dimension of component

codes U
(h−1)
2i−1 and U

(h−1)
2i , respectively. Lemma 1 implies that

k
(h−1)
2i−1 ≥ k

(h−1)
2i . Armed with this, the following Theorem de-

fines the systematic generator matrix of a U-UV code.
Theorem 2: Let G̃(h−1)

2i−1 and G̃
(h−1)
2i denote the systematic

generator matrix of U(h−1)
2i−1 and U

(h−1)
2i , respectively. The sys-

tematic generator matrix of U(h)
i can be determined by

G̃
(h)
i =

⎡

⎣
G̃

(h−1)
2i−1 G̃

(h−1)
2i−1

0 G̃
(h−1)
2i

⎤

⎦+

[
0 G̃

(h−1)
2i

0 0

]

. (5)

Proof: Since G̃
(h−1)
2i−1 =

[
I
(h−1)
2i−1 P

(h−1)
2i−1

]
and G̃

(h−1)
2i =

[
I
(h−1)
2i P

(h−1)
2i

]
, where I

(h−1)
2i−1 and I

(h−1)
2i are the identity sub-

matrices of G̃(h−1)
2i−1 and G̃

(h−1)
2i , respectively, and P

(h−1)
2i−1 and

P
(h−1)
2i are their parity submatrices. For simplicity, sizes of the

all-zero submatrices 0 are not specified. Based on (3), with
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the systematic generator matrix of U
(h−1)
2i−1 and U

(h−1)
2i , the

systematic generator matrix of U(h)
i can be defined as

G̃
(h)
i =

⎡

⎣
G̃

(h−1)
2i−1 G̃

(h−1)
2i−1

0 G̃
(h−1)
2i

⎤

⎦

=

⎡

⎣
I
(h−1)
2i−1 P

(h−1)
2i−1 I

(h−1)
2i−1 P

(h−1)
2i−1

0 I
(h−1)
2i P

(h−1)
2i

⎤

⎦.

Based on Lemma 1, k(h−1)
2i−1 ≥ k

(h−1)
2i . Hence,

⎡

⎣
I
(h−1)
2i−1 P

(h−1)
2i−1 I

(h−1)
2i−1 P

(h−1)
2i−1

0 I
(h−1)
2i P

(h−1)
2i

⎤

⎦+

[
0 I

(h−1)
2i P

(h−1)
2i

0 0

]

=

⎡

⎣
I
(h−1)
2i−1 P

(h−1)
2i−1 0 Ω

0 I
(h−1)
2i P

(h−1)
2i

⎤

⎦, (6)

where the submatrix
[
0 Ω

]
is generated by

[
0 Ω

]
=
[
I
(h−1)
2i−1 P

(h−1)
2i−1

]
+

[
I
(h−1)
2i P

(h−1)
2i

0

]

. (7)

It can be seen that (6) is in a systematic form.
Theorem 2 shows that the systematic generator matrix G̃

(H)
1

of an H-level U-UV code can be recursively constructed by
the systematic generator matrices of its BCH component codes.
Given a message m= (m1,m2), where m1 and m2 are of
length k

(h−1)
2i−1 and k

(h−1)
2i , respectively. Based on (6), the sys-

tematic codeword u
(h)
i can be generated by

u
(h)
i =mG̃

(h)
i

= (m1,m2)

⎡

⎣
I
(h−1)
2i−1 P

(h−1)
2i−1 0 Ω

0 I
(h−1)
2i P

(h−1)
2i

⎤

⎦

=
(
m1,m1P

(h−1)
2i−1 ,m2,m1Ω+m2P

(h−1)
2i

)
, (8)

where the submatrix
[
0 Ω

]
is defined as in (7). Similarly, the

systematic U-UV codeword u
(H)
1 can be generated by G̃

(H)
1 .

III. CODE DESIGN

The U-UV code design is realized through determining its
component code rates. This work considers both the finite
length rate of each subchannel and the equal error probability
between all component codes, aiming to construct a U-UV code
that achieves a targeted transmission rate while maintaining a
good decoding performance.

A. Finite Length Rate

With a targeted transmission rate, the BCH component code
rates can be designed based on the finite length rates of the
subchannels, which is determined through the normal approx-
imation (NA) bound [25]. Note that BCH component codes
are of short-to-medium length, they are not capacity approach-
ing codes.

Let W
(h)
i denote an equivalent subchannel at level-h that

conveys component code U
(h)
i . At level-0, the BCH compo-

nent codes are transmitted through subchannels W(0)
1 ,W

(0)
2 , ...,

W
(0)

2H
. Let Ri denote the maximum transmission rate of sub-

channel W(0)
i , such that if

Ri ≤Ri, (9)

error probability of U
(0)
i can be arbitrarily small. Given an

H-level U-UV code, the average transmission rate of all sub-
channels is R= (

∑2H

i=1 Ri)/2
H . When codeword length n is

sufficiently large, the maximum transmission rate of subchannel
W

(h)
i can be characterized by its capacity I(W

(h)
i ). But without

this prerequisite on n, the maximum transmission rate would
retreat from the capacity, due to channel dispersion, resulting in
the a finite length transmission rate over the subchannel. Gaus-
sian approximation (GA) [27] can be utilized to first estimate
the equivalent noise variance. Subsequently, the subchannel
capacities and their dispersions can be determined, leading to
the characterization of the finite length rate for the subchannel.

Let u(h)
i,j denote the jth bit of a component codeword u

(h)
i ,

where j = 0, 1, ..., 2hn− 1. Let L
(h)
i,j further denote its de-

coding log-likelihood ratio (LLR), which will be defined in
Section IV-A. They can be regarded as Gaussian random vari-
ables. Assume that the U-UV codeword u

(H)
1 is transmitted

through the additive white Gaussian noise (AWGN) channel
using binary modulation. Its noise variance is σ2. The received
LLRs exhibit E[L(H)

1,j ] = 2/σ2 and var[L
(H)
1,j ] = 4/σ2, respec-

tively, which are denoted as L
(H)
1,j ∼N (2/σ2, 4/σ2). In the

U-UV paradigm, means of the decoding LLRs can be computed
level-by-level as [27]

E

[
L
(h−1)
2i−1,j′

]
= 2E

[
L
(h)
i,j

]
, (10)

E

[
L
(h−1)
2i,j′

]
= ϕ−1

(

1−
(
1− ϕ

(
E

[
L
(h)
i,j

]))2
)

, (11)

where j = 0, 1, ..., 2hn− 1, j′ = 0, 1, ..., 2h−1n− 1 and

ϕ(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1− 1√
4πz

∫ +∞
−∞ tanh

(ν

2

)

× exp

(

− (ν − z)2

4z

)

dν, z > 0,

1, z = 0.

(12)

Finally, E[L
(0)
i,j ] can be determined. They are utilized to

determine the subchannel capacities I(W
(0)
i ). In particular,

with E[L
(0)
i,j ], the noise variance of subchannel W(0)

i is σ2
i =

2/E[L
(0)
i,j ]. Its capacity can be determined by

I(W
(0)
i ) =

1

2

∑

u
(0)
i,j∈{0,1}

E

⎡

⎢
⎣log2

P
(
yj

∣
∣
∣u

(0)
i,j

)

1
2

∑
u
(0)
i,j∈{0,1} P

(
yj |u(0)

i,j

)

⎤

⎥
⎦,

(13)
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Fig. 3. Finite length rates Ri of the 2-level U-UV construction.

where yj is the received symbol that carries coded bit u(0)
i,j , and

P (yj |u(0)
i,j ) is the channel transition probability.

The NA bound [25] is further utilized to determine the finite
length rates. For subchannel W(0)

i with capacity I(W
(0)
i ) and

a desired error probability Pe, its maximum transmission rate
is [25]

Ri = I
(
W

(0)
i

)
−
(√

Vi

n
Q−1(Pe)−

log2 n

2n

)

, (14)

where Q−1(·) is the inverse of Q-function, and Vi is the dis-
persion of subchannelW(0)

i . Subsequently, the BCH component
code rates can be determined based on (9).

Considering a 2-level U-UV construction using length 63
BCH component codes and Pe = 10−4, Fig. 3 shows the finite
length rates of the 4 subchannels. If the coded system aims
to achieve a targeted transmission rate of 0.6 bits/sym., Fig. 3
shows the signal-to-noise ratio (SNR) threshold is 1dB, at
which the finite length rates of the subchannels are R1 = 1,
R2 = 0.72,R3 = 0.61 and R4 = 0.09, respectively. Therefore,
U

(0)
1 ,U

(0)
2 ,U

(0)
3 and U

(0)
4 are chosen as the (63, 63), (63, 45),

(63, 36) and the (63, 0) BCH codes, respectively. They result
in a 2-level (252, 144) U-UV code. However, the above men-
tioned finite length rate design cannot ensure a good decoding
performance for the U-UV code. The following equal error
probability rule needs to be further applied to optimize the
code’s performance.

B. Equal Error Probability

In order to ensure a good decoding performance for the U-UV
code, the decoding performances of all component codes should
be aligned. Intuitively, the worst performing component code
becomes the decoding bottleneck of the overall U-UV code. The
component codes will be decoded by the SCL algorithm which
will be introduced in Section. IV. The decoding performance
alignment is realized through further adjusting the compo-
nent code rates. With the subchannel equivalent noise variance

and the weight spectrum of a BCH component code [37], we
use the tangential bound [38] to characterize their decoding
error probabilities.

Fig. 4(a) shows the tangential bounds of the 4 above men-
tioned BCH component codes, which are estimated over the un-
derlying AWGN channel. Note that the (63, 0) BCH code does
not carry information, resulting in its decoding error probability
being zero. Decoding error probabilities of the 4 component
codes do not align. Their rate adjustment is needed. For this,
rate of the component codes that yield a worse decoding error
probability should be reduced, and vice versa for the other
component codes that yield a better decoding error probability.
In this example, we can further reduce the rates of U

(0)
1 and

U
(0)
2 , and increase the rate of U

(0)
4 . This leads to U

(0)
1 , U(0)

2 ,
U

(0)
3 and U

(0)
4 being the (63, 57), (63, 39), (63, 36) and (63, 7)

BCH codes, respectively, resulting in the (252, 139) U-UV
code. Fig. 4(b) shows the decoding error probabilities of the
4 component codes are better aligned.

Please note that a component code rate design algorithm was
also proposed in [27] under the paradigm of the generalized
polar concatenated codes. However, this design is formulated
at the cost of overlooking the component codes’ performance
over a wider SNR regime. We will compare these two design
approaches in Section VI-B.

IV. THE SCL DECODING

The SCL decoding of a U-UV code is substantiated by the
list decoding of its component codes. In this work, the OSD
[39] is employed to decode the BCH component codes. It not
only yields a near ML decoding performance for the component
codes, but also provides a list of estimated codewords. The
SCL decoding complexity is rationalized through list pruning
and its complexity can be further reduced by eliminating the
redundant decoding paths. Finally, SCL decoding of systematic
U-UV codes is introduced.

A. The Algorithm

In the SCL decoding mechanism, the component codes are
decoded successively. Decoding of a component code is based
on the estimations of the earlier decoded ones. This leads to
the number of component codeword estimations growing ex-
ponentially, resulting in a prohibitive decoding complexity. In
order to rationalize the decoding complexity, it is assumed that l
decoding estimations are kept for each component code, which
parameterizes the SCL decoding. Note that the OSD can yield
a decoding output list size greater than l.

Assume that codeword u
(H)
1 is transmitted through a

memoryless channel using the binary phase shift keying
(BPSK) modulation. The received symbol vector is y = (y0, y1,
..., y2Hn−1) ∈ R

2Hn. Let us define Ω(h) = {1, 2, ..., 2H−h}
as the set of the indices of level-h component codes, and
Ωi(h) = {i+ 1, i+ 2, ..., 2H−h} as a subset of Ω(h). At level-
h, the component codes are decoded in the order of U(h)

2H−h →
U

(h)

2H−h−1
→ · · · →U

(h)
1 . Hence, Ωi(h) indicates the set of

level-h component codes which are decoded prior to U
(h)
i . Note
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Fig. 4. Equivalent error probabilities of U-UV component codes.

that at level-H , the U-UV code is formed and Ωi(H) = ∅. For
u
(h)
i = (u

(h)
i,0 , u

(h)
i,1 , ..., u

(h)

i,2hn−1
), LLR of u(h)

i,j is defined as [40]

L
(h)
i,j

= ln

P

(

{yj+(η−1)2hn}η∈Ω(h),
{
û
(h)
ρ,j

}

ρ∈Ωi(h)
|u(h)

i,j = 0

)

P

(

{yj+(η−1)2hn}η∈Ω(h),
{
û
(h)
ρ,j

}

ρ∈Ωi(h)
|u(h)

i,j = 1

) ,

(15)

where P ({yj+(η−1)2hn}η∈Ω(h), {û(h)
ρ,j }ρ∈Ωi(h)|u

(h)
i,j ) are the

transition probabilities of subchannel W(h)
i , û(h)

ρ,j is an estima-

tion of u(h)
ρ,j and j = 0, 1, ..., 2hn− 1. Since Ωi(H) = ∅,

L
(H)
1,j = ln

P
(
yj

∣
∣
∣u

(H)
1,j = 0

)

P
(
yj

∣
∣
∣u

(H)
1,j = 1

) . (16)

The LLRs will be updated level-by-level until L
(0)
i,j are pro-

duced. The level-(h− 1) LLRs can be determined by [40]

L
(h−1)
2i,j′ = f

(
L
(h)
i,j′ , L

(h)

i,j′+2h−1n

)
, (17)

L
(h−1)
2i−1,j′ = L

(h)
i,j′ + (−1)

û
(h−1)

2i,j′ L
(h)

i,j′+2h−1n
, (18)

where f(X ,Y) � ln eX eY+1
eX+eY , X ,Y ∈ R and j′ = 0, 1, ...,

2h−1n− 1. Eq. (18) shows that the LLRs update of component
code U

(h−1)
2i−1 requires the estimations of U(h−1)

2i .
Fig. 5 illustrates the SCL decoding of a 2-level U-UV code.

Without loss of generality, the SCL decoding of a component
code U

(h)
i can be performed by the following key operations.

Code Decomposition: If h > 0, U(h)
i is still a U-UV struc-

tural code. It should be decomposed into U
(h−1)
2i and U

(h−1)
2i−1 ,

with their LLRs updated by (17) and (18), respectively.

Fig. 5. The SCL decoding process of a 2-level U-UV code.

Component Code Decoding: The above decomposition
continues until level-0, where the BCH component codes
U

(0)
4 ,U

(0)
3 ,U

(0)
2 ,U

(0)
1 are decoded by the OSD.

Code Reconstruction: Once the estimations of û(h−1)
2i−1 and

û
(h−1)
2i have been obtained, û(h)

i can be obtained as in (2).
The above SCL decoding of the U-UV code can be il-

lustrated by a decoding tree that is shown in Fig. 6(a). In
the tree, each layer corresponds to a BCH component code
and nodes of the layer represent its estimations. With l es-
timations for each component BCH codeword, the number
of decoding paths will grow exponentially, leading to a pro-
hibitive decoding complexity. Therefore, decoding path prun-
ing is needed. For this, the following proposition needs to
be introduced.

Proposition 3: In the SCL decoding of U-UV codes, the l

most likely estimations of the ith BCH component code U
(0)
i

are kept, where i= 1, 2, ..., 2H . They are further denoted as
û
(0)
i (1), û

(0)
i (2), ..., û(0)

i (l), respectively.
Let û

(0)
i (s′)= (û

(0)
i,0 (s

′), û
(0)
i,1 (s

′), ..., û
(0)
i,n−1(s

′)) and

û
(0)
i+1(s)= (û

(0)
i+1,0(s), û

(0)
i+1,1(s), ..., û

(0)
i+1,n−1(s)) denote an
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Fig. 6. The SCL decoding tree, l= 3.

estimation of U
(0)
i and U

(0)
i+1, respectively, where s, s′ = 1, 2,

· · · , l. Further let

L
(0)
i (s′) =

(
L
(0)
i,0 (s

′), L
(0)
i,1 (s

′), ..., L
(0)
i,n−1(s

′)
)

(19)

denote the corresponding LLR vector that leads to the estima-
tion û

(0)
i (s′). The correlation distance between L

(0)
i (s′) and

û
(0)
i (s′) is defined as

λ
(s,s′)
i = λ

(
L

(0)
i (s′), û

(0)
i (s′)

)

=
∑

j∈Ψ
(s,s′)
i

∣
∣
∣L

(0)
i,j (s

′)
∣
∣
∣ , (20)

where Ψ
(s,s′)
i = {j |L(0)

i,j (s
′) · (1− 2û

(0)
i,j (s

′))< 0}. Please

note that in (20), L(0)
i (s′) is obtained based on the estimation

û
(0)
i (s) as in (17) and (18). This correlation distance is a

metric for assessing the likelihood of the decoding estimations.
A smaller correlation distance indicates the estimation is
more likely to be the transmitted codeword. Over the SCL
decoding tree in Fig. 6(a), λ(s,s′)

i is the metric of the branch
that emancipates from node s of layer i+ 1 and ends at node

Algorithm 1 SCL Decoding of U(h)
i , SCLD(U

(h)
i )

Input: {L(h)
i,j |j = 0, 1, ..., 2hn− 1}, l;

Output: {û(h)
i (s)};

1: If h > 0
2: Determine the LLRs of U(h−1)

2i as in (17);
3: Perform SCLD(U

(h−1)
2i ) and produce {û(h−1)

2i (s)};
4: For each estimation û

(h−1)
2i do

5: Determine the LLRs of U(h−1)
2i−1 as in (18);

6: Perform SCLD(U
(h−1)
2i−1 ) and produce {û(h−1)

2i−1 (s)};

7: For each pair of û(h−1)
2i−1 and û

(h−1)
2i do

8: Reconstruct û(h)
i as in (2);

9: Form the estimation list {û(h)
i (s)};

10: Else
11: Decode U

(0)
i , producing {û(0)

i };
12: Determine Λ

(s,s′)
i as in (20) and (21);

13: Keep the l most likely estimations of U(0)
i ;

s′ of layer i. Metrics of the nodes are accumulated along the
SCL decoding path, resulting in the accumulated correlation
distances (ACDs) that are stored at the paths. In particular, the
ACD at node s′ of layer i is defined as

Λ
(s,s′)
i =Φ

(s)
i+1 + λ

(s,s′)
i , (21)

where Φ(s)
i+1 denote the ACDs that are kept at layer i+ 1. Based

on Proposition 3, Φ(1)
i+1, Φ(2)

i+1, . . ., Φ(l)
i+1 are the l smallest ACDs

at layer i+ 1. Similarly, an SCL decoding path with a smaller
ACD indicates it is more likely to be the correct path. Since U(0)

2H

is the first component code to be decoded, its estimations are the
roots of the SCL decoding tree. Therefore, their branch metrics
and node metrics are denoted as λ(s,−)

2H
and Λ

(s,−)

2H
, respectively.

At the beginning, Φ(s)

2H
are initialized as

Φ
(s)

2H
= Λ

(s,−)

2H
= λ

(s,−)

2H
. (22)

By processing from layer i+ 1 to layer i, l2 ACDs are de-
termined by (20) and (21). Based on Proposition 3, these l2

ACDs will be sorted, and only the l smallest ones will be kept
and denoted as Φ(s′)

i . This path pruning is shown over the SCL
decoding tree as in Fig. 6(b) where l = 3.

The above SCL decoding is summarized as in Algorithm 1.
After the last BCH component code U

(0)
1 is decoded, the l

smallest ACDs Φ
(1)
1 ,Φ

(2)
1 , ...,Φ

(l)
1 will be kept. Let

s∗ = argmin
{
Φ

(s)
1 , ∀s

}
. (23)

The SCL decoding path that corresponds to Φ
(s∗)
1 will be iden-

tified. The estimated U-UV codeword and its message can then
be retrieved from the path.

B. Complexity Reduction

The above SCL decoding complexity can be further reduced
by eliminating the unpromising decoding paths. This is realized
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by estimating the branch metrics λ(s,s′)
i , such that the decoding

paths that are unlikely to yield the l smallest ACDs can be
eliminated. Let us first introduce the the following proposition.

Proposition 4: The l smallest ACDs kept at layer i+ 1 are
reordered as

Φ
(1)
i+1 ≤ Φ

(2)
i+1 ≤ · · · ≤ Φ

(l)
i+1. (24)

Subsequently, in decoding component code U
(0)
i , we prioritize

the elaboration of the node with a smaller ACD. That says
U

(0)
i will first be decoded based on the estimation of U(0)

i+1 that

corresponds to Φ
(1)
i+1, yielding the ACDs Λ

(1,1)
i , Λ(1,2)

i , . . . ,

Λ
(1,l)
i at layer i. They are sorted as in (24) and denoted as

Φ
(1)
i , Φ(2)

i , . . . , Φ(l)
i , respectively. The decoder then continues

to decode U
(0)
i based on the node with Φ

(2)
i+1. However, if the

path starting from the node is unlikely to yield an ACD that is
smaller than Φ

(l)
i , it will be discarded. Its inherited component

code decoding can be skipped. This results in a complexity
reducing variant of the above mentioned SCL decoding.

Assuming the branch metric λ
(s,s′)
i are Gaussian distributed

with λ
(s,s′)
i ∼N (μλi

, σ2
λi
) [41], [42], its lower bound Υi can

be estimated through

1√
2πσλi

∫ ∞

Υi

e
−

(λi−μλi
)2

2σ2
λi dλi = 1− θ, (25)

where θ ∈ (0, 1). Note that the mean μλi
and variance σ2

λi

can be computed based on Theorem 4 of [42]. Therefore, in
decoding component code U

(0)
i , its correlation distance lower

bound Υi can be obtained aforehand. Once the l smallest ACDs
Φ

(1)
i ,Φ

(2)
i , . . . ,Φ

(l)
i have been obtained from the decoding that

starts from node Φ
(1)
i+1, the following decoding of U(0)

i will be
assessed before their execution. For s > 1 and if

Φ
(s)
i+1 +Υi > Φ

(l)
i , (26)

it indicates nodes of Φ(s)
i+1, Φ(s+1)

i+1 , . . . , Φ(l)
i+1 cannot lead to a

more likely decoding path than existing ones. Their decoding
path elaboration can be skipped. Otherwise, the decoder con-
tinues to decode U

(0)
i based on the node with Φ

(s)
i+1, yielding

the ACDs Λ(s,1)
i , Λ(s,2)

i , . . . , Λ(s,l)
i at layer i. Afterward, the l

smallest ACDs that are kept at layer i are updated and sorted
again as in (24). This process continues until the condition of
(26) occurs or all the decoding path elaborations from layer
i+ 1 have been completed. The decoder then moves onto de-
code U

(0)
i−1. Note that in practice, the above θ of (25) needs to

be optimized empirically.
This RC-SCL decoding also results in a smaller ACD sorting

complexity. In the proposed SCL, an l2-to-l path sorting is
required at each layer. In this RC-SCL, the l2-to-l path sorting
is replaced by several sequential 2l-to-l path sortings. When the
received information is reliable, this 2l-to-l path sorting rarely
occurs. The simulation results in Section VI-B will demon-
strate this property and the complexity reduction effect of the
RC-SCL decoding.

C. Decoding of Systematic U-UV Codes

SCL decoding of systematic U-UV codes can be processed
similarly as above. However, after the component code decod-
ing, the U-UV codeword needs to be reconstructed in order to
retrieve the intended message. The following Lemma shows
the relationship between different portions of the systematic
codeword of (8).

Lemma 5: Given a systematic codeword (m1,m1P
(h−1)
2i−1 ,

m2,m1Ω+m2P
(h−1)
2i ) of U

(h)
i as in (8), (m2,m1Ω+

m2P
(h−1)
2i )− (m1,m1P

(h−1)
2i−1 ) is a codeword of U(h−1)

2i .
Proof: Recall that for m= (m1,m2), m1 and m2 are of

lengths k
(h−1)
2i−1 and k

(h−1)
2i , respectively. Since

(
m2,m1Ω+m2P

(h−1)
2i

)
= (m1,m2)

[
0 Ω

I
(h−1)
2i P

(h−1)
2i

]

and
[

0 Ω

I
(h−1)
2i P

(h−1)
2i

]

=

[
I
(h−1)
2i−1 P

(h−1)
2i−1

I
(h−1)
2i P

(h−1)
2i

]

+

[
I
(h−1)
2i P

(h−1)
2i

0

]

,

we have
(
m2,m1Ω+m2P

(h−1)
2i

)

= (m1,m2)

⎛

⎝

⎡

⎣
I
(h−1)
2i−1 P

(h−1)
2i−1

I
(h−1)
2i P

(h−1)
2i

⎤

⎦+

[
I
(h−1)
2i P

(h−1)
2i

0

]⎞

⎠.

Based on Lemma 1, we know k
(h−1)
2i−1 ≥ k

(h−1)
2i , and

(
m2,m1Ω+m2P

(h−1)
2i

)

=
(
m1,m1P

(h−1)
2i−1

)
+
(
m2,m2P

(h−1)
2i

)

+m1|1∼k
(h−1)
2i

[
I
(h−1)
2i P

(h−1)
2i

]
,

where m1|1∼k
(h−1)
2i

denotes a subvector of m1 that contains its

first k(h−1)
2i entries. Therefore,

(
m2,m1Ω+m2P

(h−1)
2i

)
−
(
m1,m1P

(h−1)
2i−1

)

=
(
m2,m2P

(h−1)
2i

)
+m1|1∼k

(h−1)
2i

[
I
(h−1)
2i P

(h−1)
2i

]

=
(
m2 +m1|1∼k

(h−1)
2i

) [
I
(h−1)
2i P

(h−1)
2i

]

=
(
m2 +m1|1∼k

(h−1)
2i

)
G′(h−1)

2i .

It can be seen that (m2,m1Ω+m2P
(h−1)
2i )−(m1,m1P

(h−1)
2i−1 )

is a codeword of U(h−1)
2i .

The above Lemma shows that a systematic U-UV codeword
still maintains the recursive U-UV structure. At level-h, both
message m1 and m2 can be retrieved from the systematic
codeword u

(h)
i . Hence, systematic U-UV codes can be decoded

in the same manner as their non-systematic counterparts. But
the systematic U-UV codeword needs to be reconstructed after
all BCH component codes have been decoded. The intended
message can be further retrieved from therein.
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TABLE I
DECODING COMPLEXITY OF DIFFERENT CODING SCHEMES

U-UV, SCL U-UV, RC-SCL Polar, SCL

LLR Update O(lnH2H) O(l̄nH2H) O(ln2H log2(n2
H))

Component Code Decoding O(l2Hk
τi∗
i∗ ) O(l̄2Hk

τi∗
i∗ ) −

Path Sorting O(l2H(Γ∗ + l) log2 l) O(l̄2H(Γ∗ + l) log2 l) O(2kl log2 l)

V. COMPLEXITY AND LATENCY ANALYSES

The SCL decoding complexity and latency for the U-UV
codes are characterized.

A. Decoding Complexity

In SCL decoding of U-UV codes, the complexity attributes
to the LLR updates between levels, the decoding of component
codes and the decoding path sorting.

With a decoding output list size of l, the complexity of LLR
updates of an H-level U-UV code can be characterized as that
of SCL decoding n polar codes of length 2H . Hence, it is
O(ln2H log2 2

H) =O(lnH2H).
In this work, the BCH component codes are decoded by the

OSD. With an (n, k) BCH code, the complexity of an order-τ
OSD is O(kτ ) [39]. Let τi denote the OSD order for component
code U

(0)
i , and

i∗ = argmax{kτii | i= 1, 2, . . . , 2H}. (27)

The OSD complexity in decoding all 2H BCH component codes
can be approximated as O(l2Hkτi∗i∗ ).

The SCL decoding path sorting exists in identifying the l
most likely estimations from the OSD output and the sub-
sequent l2-to-l decoding path sorting. Let Γi denote the to-
tal number of estimations that are generated by the OSD
of U(0)

i , and

Γi =

τi∑

j=0

(
ki
j

)

. (28)

In order to identify the l most likely estimations from the OSD
of U(0)

i , the sorting complexity is O(Γi log2 l). Further let

Γ∗ =max{Γi | i= 1, 2, . . . , 2H}, (29)

the sorting complexity for identifying the l most likely estima-
tions from the OSD of all component codes can be approx-
imated as O(l2HΓ∗ log2 l). Similarly, the complexity of the
l2-to-l decoding path sorting is O(2H l2 log2 l).

Complexity of the RC-SCL decoding can be further analyzed
as follows. In the RC-SCL decoding, some of the l stored nodes
of the layers may not be explored. Let l̄ denote the average
number of explored nodes at each layer, and l̄ ≤ l. Similar to the
above analysis, complexity of the LLR updates is O(l̄nH2H),
and the OSD complexity can be approximated as O(l̄2Hkτi∗i∗ ).
The sorting complexity for identifying the l most likely estima-
tions from the OSD would be O(l̄2HΓ∗ log2 l). Furthermore,
the 2l-to-l decoding path sorting complexity is O(l̄2H l log2 l).

The above analysis is summarized in Table I, which also
shows the SCL decoding complexity of a polar code with length

of n2H and dimension of k. It shows that the RC-SCL decoding
reduces the SCL decoding complexity by a factor of 1− l̄/l.
Table I also shows that the SCL decoding of a polar code yields
an extra LLR update complexity of O(ln2H log2 n) over that
of a U-UV code. However, the latter requires extra complexity
in decoding the component codes and sorting. Note that the
component code decoding complexity will become dominant
if the OSD order is large. But there also exist several methods
to reduce the OSD complexity, including the box-and-match
algorithm [43]. Moreover, list decoding of the component codes
can also be realized through other more algebraic approaches
[44], [45], [46], which can be considered if other component
codes are employed.

B. Decoding Latency

In this work, the decoding latency is characterized in terms
of the number of clock cycles (CCs) required to decode a
U-UV codeword. It is a metric that has been widely adopted
for analyzing the decoding latency [21]. Similarly, the SCL
decoding latency attributes to the LLR updates between levels,
the component code decoding and the subsequent path sorting.

Let us assume that the maximum degrees of parallelism in
the LLR updates and the re-encoding of OSD are P1 and P2,
respectively, where P1 is a multiple of n. At level-h, the LLR
updates are performed 2H−h times, each of which processes an
LLR vector of length n2h. If n2h ≤ P1, only one CC is required
for an update. Otherwise, 	n2h/P1
CCs are needed. Hence, the
LLR update requires [47]

T1 =

�log2(P1/n)�∑

h=0

2H−h +

H−1∑

h=�log2(P1/n)�+1

2H−h · 	n2h/P1


≈ n2H

P1

(

H − 2− log2
P1

n

)

+ 2H+1 (30)

CCs. In decoding the ith BCH component code, OSD is per-
formed for l decoding paths in parallel. Sorting of the input
LLRs requires one CC, and Gaussian elimination (GE) requires
k′i CCs, where k′i =min{ki, n− ki} [48]. The re-encoding
requires 	lΓi/P2
 CCs. Based on a pipeline structure, calcu-
lating the correlation distances, identifying the l most likely
estimations and sorting the l2 decoding paths would require
one CC each. Hence, decoding a component code requires
k′i + 	lΓi/P2
+ 4 CCs. Further let K =

∑2H

i=1 k
′
i, decoding all

component codes yields a latency of

T2 =K + 4 · 2H +

2H∑

i=1

	lΓi/P2
. (31)
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TABLE II
DECODING LATENCY OF DIFFERENT CODING SCHEMES

Latency (CCs)

U-UV, SCL K + 6 · 2H +Q1 +Q2

U-UV, RC-SCL (best) K + 6 · 2H +Q1 +Q′
2

U-UV, RC-SCL (worst) Eq. (34)
Polar, SCL k + n2H+1 +Q1

Therefore, decoding a U-UV code requires

TSCL = T1 + T2

≈K + 6 · 2H +Q1 +Q2 (32)

CCs, where Q1 =
n2H

P1
(H − 2− log2

P1

n ) and Q2 =
∑2H

i=1

	lΓi/P2
. In particular, if P1 ≥ n2H−1 and P2 ≥ lΓ∗, the LLR
updates and the decoding of each component code can be fully
parallelized, resulting in a decoding latency of TSCL =K + 7 ·
2H − 2. Therefore, OSD dominates the SCL decoding latency.

The RC-SCL decoding would however incur latency. In the
best case, there is only one path elaboration at decoding each
component code. It requires 	Γi/P2
 CCs to generate Γi esti-
mations. Hence, based on (32), the decoding latency is

T (best)
RC-SCL =K + 6 · 2H +Q1 +Q′

2, (33)

where Q′
2 =
∑2H

i=1	Γi/P2
. In the worst case, another l − 1
path elaborations are needed for decoding each component code
except U(0)

2H
. This leads to an increased decoding latency of

T (worst)
RC-SCL = T (best)

RC-SCL + (l − 1)·
⎛

⎝K − k′2H + 4(2H − 1) +

2H−1∑

i=1

	Γi/P2


⎞

⎠. (34)

Again, if P1 ≥ n2H−1 and P2 ≥ Γ∗, T (best)
RC-SCL and T (worst)

RC-SCL con-
verge to T (best)

RC-SCL =K + 7 · 2H − 2 and T (worst)
RC-SCL = T (best)

RC-SCL +
(l − 1)(K − k′2H + 5(2H − 1)), respectively. It should be
pointed out that, the RC-SCL decoding consumes less hardware
resources, since the l2-to-l path sorting is replaced by several
sequential 2l-to-l sortings.

Table II summarizes the above decoding latency analysis.
They are compared with the SCL decoding latency for the polar
codes of length n2H and dimension k [40]. Note that for most
practical codes, K ≤ k and 6 · 2H < n2H+1. If the OSD can be
realized with a large degree of parallelism, the SCL decoding
latency of U-UV codes would be much lower than that of polar
codes. More numerical results will be provided in Section VI-B.

VI. PERFORMANCE ANALYSIS

This section first studies the theoretical performance bench-
marks for the U-UV codes, which will be utilized to evaluate our
simulation results. Our simulations show that the U-UV codes
can outperform several key good performing short-to-medium
length codes.

A. Theoretical Benchmarks

The SC decoding upper bound and the approximated ML de-
coding lower bound of the U-UV codes are characterized, which
are utilized as the performance benchmarks for our simulations.

1) SC Decoding Upper Bound: Decoding error probability
of a U-UV code can be determined by the equivalent error prob-
abilities of its BCH component codes. For an H-level U-UV
code, there are 2H component decoding events. The erroneous
decoding (including the decoding errors and failures) of any
component code will lead to the erroneous decoding of the
U-UV code. Let Ti denote the event that erroneous decoding
first occurs in decoding U

(0)
i . The decoding error probability

of an H-level U-UV code is determined by

Pe =
2H∑

i=1

P (Ti). (35)

For BCH component codes, P (Ti) can be characterized the-
oretically. In this work, we utilize the tangential bound [38]
which requires the code’s weight spectrum. Let Ptan,i denote
the tangential bound of component code U(0)

i that is transmitted
through the equivalent polarized subchannel. Hence, P (Ti)≤
Ptan,i. The decoding error probability of an H-level U-UV code
is upper bounded by

Pe ≤
2H∑

i=1

Ptan,i. (36)

2) Approximated ML Decoding Lower Bound: The SCL
decoding performance can be lower bounded by the code’s ML
decoding performance. Let Eb and N0 = 2σ2 denote the energy
per message bit and the noise power spectral density, respec-
tively. Note that a code’s ML decoding error probability can be
characterized by the union bound. The truncated union bound
that is determined by the code’s minimum weight can be seen as
an approximation of the ML decoding lower bound at the high
SNR regime [49]. Therefore, the ML decoding error probability
lower bound of a U-UV code can be approximated as

Pe ≥
1

2
Admin

erfc

(√
dminREb

N0

)

, (37)

where erfc(·) is the complementary error function and Admin

is the number of U-UV codewords with the minimum weight
dmin. Based on Definition 1, dmin can be determined by know-
ing the minimum Hamming distances of the BCH component
codes. The following Lemma is further introduced to determine
Admin

. For simplicity, the component codes are resumed the
name of U code and V code in this Lemma and its proof.

Lemma 6: Given a U-UV code, let AU and AV denote the
number of the minimum weight codewords of the U code and
the V code, respectively. The number of the minimum weight
codewords of the U-UV code is

Admin
=

⎧
⎪⎨

⎪⎩

AU, if 2dU < dV;

AU +AV +A′, if 2dU = dV;

AV +A′′, if 2dU > dV,

(38)

where A′ and A′′ are nonnegative integers.
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Fig. 7. Performance of the 2-level (252, 139) U-UV code.

Proof: The proof is provided in Appendix A.
The above Lemma shows that Admin

of a U-UV code can be
partially characterized by the number of the minimum weight
codewords of its component codes, i.e., AU and AV. But deter-
mining A′ and A′′ remains challenging. However, if 2dU < dV,
Admin

=AU. In this case, the ML decoding performance lower
bound of the U-UV code can be characterized by only knowing
the distance property and weight distribution of the U code.
For the 2-level (255, 139) U-UV code, 2dU < dV holds for
its BCH component codes. The U-UV code has dmin = 12
and Admin

= 651.

B. Simulation Results

The SCL decoding performance of the BCH based U-UV
codes are shown together with some numerical results on de-
coding complexity and latency. With an SCL decoding output
list size of l, the OSD orders are chosen such that a near ML
decoding performance of the BCH component codes can be
achieved. In particular, the (63, 57), (63, 51), (63, 45), (63, 39),
(63, 36), (63, 24), (63, 18), (63, 10) and (63, 7) BCH codes are
utilized as the component codes for constructing the presented
U-UV codes. Their decoding orders are 1, 1, 2, 2, 2, 3, 3, 3 and
3, respectively. The BCH component codes are designed by the
combined approach introduced in Section III. The simulation
results are obtained over the AWGN channel using BPSK. The
U-UV codes are also compared with other key short-to-medium
length channel codes, including polar codes, BCH codes and
TBC codes.

1) Performance of U-UV Codes: Fig. 7 shows the SCL de-
coding performance of the 2-level (252, 139) U-UV code. The
U-UV code is constructed by the (63, 57), (63, 39), (63, 36)
and (63, 7) BCH codes. It can be seen that the SCL decoding
outperforms the SC decoding. A greater coding gain can be
achieved by increasing the SCL decoding output list size l.
The SC decoding upper bound and approximated ML decoding
lower bound envelop the SC and SCL decoding performances.

Fig. 8. Decoding complexity of the 2-level (252, 139) U-UV code.

Fig. 9. Comparison between the systematic and non-systematic U-UV
codes.

For this U-UV code, its SCL decoding with l = 16 can approach
the approximated ML lower bound at the FER of 10−4. Fig. 7
also shows that the RC-SCL decoding maintains a similar per-
formance as its SCL prototype. Note that for the RC-SCL, θ =
10−4. Fig. 8 further shows the complexity reduction brought by
the RC-SCL decoding. The average numbers of decoding float-
ing point operations (FLOPs) and binary operations (BOPs) are
shown. It can be seen that the RC-SCL decoding can reduce the
SCL decoding complexity significantly. Especially as the SNR
increases, it converges to the SC decoding complexity. This
implies that l̄ converges to 1 as the channel condition improves.

Fig. 9 further compares the (252, 139) U-UV code with its
systematic counterpart. Both the decoding BER and FER are
shown. It can be seen that the systematic U-UV code yields the
same FER performance as the non-systematic one, but provides
a better BER performance. This BER performance disparity
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Fig. 10. Comparison between U-UV, BCH and polar codes.

comes from the U-UV codeword reconstruction that is required
by the systematic code. This reconstruction will reinterpret
some wrongly estimated coded bits, resulting in an enhanced
BER performance. A similar decoding phenomenon has also
been observed for systematic polar codes [50].

2) Comparison With Other Coding Schemes: The BCH
based U-UV codes closely relate to both BCH codes and polar
codes. In particular, when there is only one component code,
the U-UV structure dissolves, resulting in a single BCH code.
To the opposite, when the component codes are of length-1,
the U-UV code evolves into a polar code. Hence, the proposed
U-UV codes are compared with both BCH codes and polar
codes. They are also compared with the other good performing
short-to-medium length codes, the TBC codes.

Fig. 10 compares the 2-level (252, 139) U-UV code with the
(255, 139) BCH code and the (256, 140) polar code. The BCH
code is decoded by the order-τ OSD, denoted as OSD (τ ). The
polar code is designed by the 5th generation new radio (5G NR)
standard. Its SCL decoding is assisted by a length-8 CRC code.
Fig. 10 shows that the U-UV code can substantially outperform
the BCH code. Meanwhile, with the same SCL decoding output
list size, the U-UV code can also achieve a remarkable coding
gain over the polar code. However, it is noticed that unlike the
polar code, limited coding gain can be achieved by increasing
the SCL decoding output list size of the U-UV code. This
suggests performance of a U-UV code heavily depends on the
decoding of its component codes, and requires a rather small
SCL decoding output list size. Moreover, it shall be aware that
unlike polar codes, the high SCL decoding performance of a
U-UV code does not need to be ensured by the use of CRC.
This is because the OSD can provide a near ML decoding
performance for its component codes. Consequently, the ML
U-UV codeword is more likely to be included in the SCL
decoding output list. Table III further compares the decoding
complexity and latency of the three coding schemes. Note that
the latency is measured in terms of the number of required CCs
for decoding a codeword. We consider both full parallelism and
partial parallelism. It shows that the U-UV code can outperform

TABLE III
DECODING COMPLEXITY AND LATENCY OF

DIFFERENT CODING SCHEMES

Scheme FLOPs Latency (CCs)

U-UV, SCL (2) 5.5× 104 90
U-UV, SCL (4) 1.2× 105 93†

U-UV, SCL (8) 2.8× 105 103‡

BCH, OSD (1) 1.1× 104 143
BCH, OSD (2) 5.6× 105 145†

BCH, OSD (3) 2.6× 107 149‡

Polar, SCL (2) 5.1× 103 650
Polar, SCL (4) 9.8× 103 652†

Polar, SCL (8) 1.9× 104 660‡

Polar, SCL (16) 4.1× 104 660‡

Polar, MSCL (2)∗ [17] 1.5× 105 126
Polar, MSCL (4)∗ [17] 3.2× 105 140†

Polar, MSCL (8)∗ [17] 6.7× 105 156‡

Polar, FSSCL (2) [18] 3.1× 103 128
Polar, FSSCL (4) [18] 1.4× 104 158
Polar, FSSCL (8) [18] 5.4× 104 192

† A half of the required maximum degree of parallelism.
‡ A quarter of the required maximum degree of parallelism.
∗ Size of the multi-bit decision is M = 8.

a single BCH code with a lower complexity and smaller latency.
This implies that it is beneficial to replace a large BCH code
by several smaller ones that are coupled through the U-UV
structure. As in comparison with the polar code, SCL decoding
of the U-UV code is more complex in general, even when the
two codes yield a similar decoding performance. E.g., decoding
the U-UV code with l = 2 performs similarly as that of the
polar code with l = 16 under a similar complexity. Decoding the
U-UV code is still slightly more complex. However, as Table
III shows, decoding the U-UV code exhibits a great advantage
in latency. This primarily thanks to the U-UV code’s block wise
SC (or SCL) decoding manner, where the number of the com-
ponent codes (blocks) is very limited. Moreover, Table III also
shows the decoding complexity and latency of the facilitated
SCL decoding, including the multi-bit SCL (MSCL) decod-
ing [17] and the fast simplified SCL (FSSCL) decoding [18]
for the polar code. They can yield the same decoding perfor-
mance as their prototype. It shows that latency of decoding the
U-UV code remains advantage when comparing with the MSCL
and the FSSCL decoding. Note that both the MSCL and the
FSSCL decoding trade the decoding complexity for latency
gains. Latency merit of the U-UV code can also be understood
in this aspect. Table III shows SCL decoding the U-UV code
yields a better tradeoff than the MSCL decoding and the FSSCL
decoding of the polar code. E.g., Fig. 10 shows the U-UV code
with l = 2 performs similarly as the polar code with l = 8. Table
III shows SCL decoding the U-UV code exhibits a smaller
latency than both the MSCL decoding and the FSSCL decoding
the polar code. It is also less complex than the MSCL decoding.
This is due to the block wise (component code) decoding in a
U-UV code is more efficient than that in the MSCL decoding
of a polar code.

Table IV further shows RC-SCL decoding latency for the
(252, 139) U-UV code, in which both the worst case and the
average latency are measured. Note that the best case latency
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TABLE IV
RC-SCL DECODING LATENCY OF THE (252,139) U-UV CODE

SNR (dB)
l = 2 l = 4 l = 8

ave. worst ave. worst ave. worst

1.0 122 162‡ 193 306‡ 330 594‡

2.0 102 162‡ 144 306‡ 229 562
3.0 95 162‡ 113 306‡ 160 466
4.0 91 133 99 201 123 370

‡ The result is consistent with eq. (34).

Fig. 11. Comparison between U-UV, polar and TBC codes.

is the same as its prototype, i.e., 90 CCs for the code. It can be
seen that the average latency converges to the SCL decoding
latency as the SNR increases. Both Tables III and IV verify the
SCL decoding latency advantage of the U-UV codes. They also
validates our latency analysis of Section V-B.

Furthermore, Fig. 11 compares the 3-level (504, 250) U-UV
code with the (512, 254) polar code that is assisted by a length-8
CRC code and the (512, 256) TBC codes with memory sizes of
m= 8, 11 and 14 [7]. The TBC codes are decoded by the wrap-
around Viterbi algorithm (WAVA) [51]. The (504, 250) U-UV
code is constructed by the (63, 57), (63, 51), (63, 45), (63, 24),
(63, 45), (63, 18), (63, 10) and (63, 0) BCH codes. It shows that
with the same SCL decoding output list size, the U-UV code
can also outperform the polar code. It also shows that this U-UV
code can significantly outperform the TBC codes with m= 8
and 11. Table. V further compares their decoding complexity
and latency. Fig. 11 shows that SCL decoding of the U-UV code
with l = 8 performs similarly as the WAVA of the TBC code
with m= 14. Table. V shows that decoding the U-UV code
requires smaller numbers of FLOPs and CCs than decoding
the TBC code. It also shows that the SCL decoding of the
U-UV code with l = 4 can already realize a better complexity-
latency tradeoff than the three SCL decoding of the polar code
with l = 8.

3) Comparison With the Existing Design: Finally, Fig. 12
compares the FER performance of the U-UV code designed by

TABLE V
DECODING COMPLEXITY AND LATENCY COMPARISON

Scheme FLOPs Latency (CCs)

U-UV, SCL (4) 5.1× 105 155
U-UV, SCL (8) 1.2× 106 155
Polar, SCL (8) 4.2× 104 1276

Polar, MSCL (8)∗ [17] 1.2× 106 254
Polar, FSSCL (8) [18] 1.0× 105 308

TBC (8), WAVA 3.8× 105 655
TBC (11), WAVA 3.1× 106 670
TBC (14), WAVA 2.5× 107 698

∗ The size of the multibit decision is M = 8.

Fig. 12. Comparison of different U-UV code designs.

our combined approach and the other designed by the algorith-
mic approach of [27]. They both result in the 2 levels (252, 183)
U-UV code. Our design yields the (63, 57), (63, 51), (63, 51)
and (63, 24) BCH component codes. The design of [27] yields
the (63, 63), (63, 51), (63, 51) and (63, 18) BCH component
codes. It can be seen that our proposed design results in a
better performing U-UV code. Performance of the U-UV code
designed by [27] has been limited by its worst performing
component code. As pointed earlier in Section III-B, the design
of [27] can only provide the component code rates for a specific
SNR, limiting its performance over a wider SNR region.

VII. CONCLUSION

This paper has proposed the U-UV structural codes and its
SCL decoding, as another competent short-to-medium length
channel code. Systematic encoding of a U-UV code has also
been introduced. The recursive U-UV coding structure leads
to capacities of the subchannels being polarized. Each of the
subchannels conveys a BCH component codeword with a rate
capped by the subchannel transmission limit. The U-UV code
design jointly considers the finite length rate and the equal
error probability rule. It yields a U-UV code that cannot only
achieve a targeted transmission rate but also competent decod-
ing performance. The SCL decoding of U-UV codes is also
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introduced based on list decoding the BCH component codes.
The RC-SCL decoding has been further proposed to facilitate
the decoding. Complexity and latency of the SCL decoding have
been analyzed. The theoretical decoding performance bench-
marks for U-UV codes have been characterized. Our simulation
results have shown that with SCL decoding, U-UV codes can
outperform BCH codes and TBC codes with a lower decoding
complexity as well as latency. In comparison with polar codes,
the U-UV codes’ performance advantage comes at the cost of
decoding complexity. But they still exhibit a significant advan-
tage on terms of decoding latency.

APPENDIX

PROOF OF LEMMA 5

Proof: Let u0 and v0 denote the minimum weight code-
word of the U code and the V code, respectively. It can be
seen that the minimum weight codeword of the U-UV code
will be in one of the following forms, (u0|u0), (0|v0) and
(u0|u0 + v0), where 0 is an all zero vector. Let w(c) denote the
Hamming weight of codeword c. We know w(u0|u0) = 2dU
and w(0|v0) = dV. Subsequently, w(u0|u0 + v0) can be char-
acterized in the following three cases.

Case I: If 2dU<dV, w(u0|u0)=2dU, w(0|v0)>2dU, and

w(u0|u0 + v0) = w(u0) + w(u0 + v0)

≥ w(u0) + (w(v0)− w(u0))

= w(v0)

> 2dU.

Therefore, the minimum weight codeword of the U-UV code
will be in the form of (u0|u0). That says Admin

=AU.
Case II: If 2dU = dV, w(u0|u0) = w(0|v0), and

w(u0|u0 + v0)≥ w(u0) + (w(v0)− w(u0))

= w(v0)

= dV. (39)

Note that if w(u0 + v0) = w(v0)− w(u0), w(u0|u0 + v0) =
dV. This requires the support of “1” in u0 is a subset of the sup-
port of “1” in v0. E.g., u0 = (10010) and v0 = (11010). Let A′

denote the number of U-UV codewords that satisfy w(u0|u0 +
v0) = dV. Therefore, the number of minimum weight code-
words of a U-UV code is AU +AV +A′.

Case III: If 2dU > dV, w(u0|u0)> dV, w(0|v0) = dV, and
w(u0|u0 + v0)≥ dV as in (39). Similarly, codeword (u0|u0 +
v0) may also have the minimum weight if w(u0 + v0) =
w(v0)− w(u0). Let A′′ denote the number of such minimum
weight codewords. The number of minimum weight U-UV
codewords is AV +A′′.
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